Catalytic living ring-opening metathesis polymerization.

نویسندگان

  • Amit A Nagarkar
  • Andreas F M Kilbinger
چکیده

In living ring-opening metathesis polymerization (ROMP), a transition-metal-carbene complex polymerizes ring-strained olefins with very good control of the molecular weight of the resulting polymers. Because one molecule of the initiator is required for each polymer chain, however, this type of polymerization is expensive for widespread use. We have now designed a chain-transfer agent (CTA) capable of reducing the required amount of metal complex while still maintaining full control over the living polymerization process. This new method introduces a degenerative transfer process to ROMP. We demonstrate that substituted cyclohexene rings are good CTAs, and thereby preserve the 'living' character of the polymerization using catalytic quantities of the metal complex. The resulting polymers show characteristics of a living polymerization, namely narrow molecular-weight distribution, controlled molecular weights and block copolymer formation. This new technique provides access to well-defined polymers for industrial, biomedical and academic use at a fraction of the current costs and significantly reduced levels of residual ruthenium catalyst.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of hybrid block copolymers via integrated ring-opening metathesis polymerization and polymerization of NCA.

Linear hybrid block copolymers with well controlled molecular weights and narrow polydispersities were synthesized via ring-opening metathesis polymerization (ROMP) followed by ring-opening polymerization of amino acid N-carboxyanhydrides.

متن کامل

Z-Selective Ruthenium Metathesis Catalysts: Comparison of Nitrate and Nitrite X-type Ligands.

Two new Ru-based metathesis catalysts, 3 and 4, have been synthesized for the purpose of comparing their catalytic properties to those of their cis-selective nitrate analogues, 1 and 2. Although catalysts 3 and 4 exhibited slower initiation rates than 1 and 2, they maintained high cis-selectivity in homodimerization and ring-opening metathesis polymerization reactions. Furthermore, the nitrite ...

متن کامل

Multiple Olefin Metathesis Polymerization That Combines All Three Olefin Metathesis Transformations: Ring-Opening, Ring-Closing, and Cross Metathesis.

We demonstrated tandem ring-opening/ring-closing metathesis (RO/RCM) polymerization of monomers containing two cyclopentene moieties and postmodification via insertion polymerization. In this system, well-defined polymers were efficiently formed by tandem cascade RO/RCM reaction pathway. Furthermore, these polymers could be transformed to new A,B-alternating copolymers via a sequential cross me...

متن کامل

Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials

This article reviews the development of catalysts for ring-opening metathesis polymerization (ROMP), synthesis of polymers bearing amino acids and peptides by ROMP of functionalized norbornenes, formation of aggregates and micelles, and applications of the polymers to medical materials. It also describes the control of monomer unit sequences, that is, living polymerization to synthesize block c...

متن کامل

Chapter 5: Ring-Opening Metathesis Polymerization with an Ultra- fast-initiating Ruthenium Catalyst

Ring-opening metathesis polymerization (ROMP) is one of the most widely used polymerizations. With the development of well-defined catalysts, such as (t-BuO)2(ArN)Mo=CH(t-Bu) (1), Cl2(PCy3)2Ru=CHPh (2), and Cl2(PCy3)(IMesH2)Ru=CHPh (3), more controlled polymer structures have been obtained by either living polymerization or chain transfer induced polymerization. However, these catalysts suffer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature chemistry

دوره 7 9  شماره 

صفحات  -

تاریخ انتشار 2015